Thyristors provide enhanced surge protection in exposure environments

12th January 2018
Posted By : Lanna Cooper
Thyristors provide enhanced surge protection in exposure environments

Littelfuse has introduced two series of SIDACtor protection thyristors optimised to protect equipment located in high exposure environments from severe overvoltage transients. The Pxxx0MEL 5kA series and Pxxx0FNL 3kA series SIDACtor protection thyristors offer enhanced reliability through multiple high energy surge events.

Unlike many non-semiconductor-based high power protective products, which can experience functional degradation after only a few surge events, the Pxxx0MEL and Pxxx0FNL series are semiconductor-based components, and will continue to provide protection through multiple surge events without functional degradation.

Typical applications for Pxxx0MEL 5kA Series and Pxxx0FNL 3kA Series SIDACtor protection thyristors include:

  • CATV amplifiers.
  • Telecom base station equipment.
  • Cell towers.
  • UPS/AC high power distribution grids.
  • Automotive battery charging systems.
  • Solar power system DC/AC inverters.
  • Uninterruptible battery backup systems. ​

“The Pxxx0MEL 5kA series and Pxxx0FNL 3kA series SIDACtor protection thyristors offer on-state voltage values that are much lower than the arc voltage of a traditional gas discharge tube. This low on-state voltage means they can handle much higher surge currents,” said Jack Tung, Global Product Marketing Manager at Littelfuse.

“They also offer a much lower voltage threshold than the clamping voltage of a metal oxide varistor, and can be used in series with clamping devices such as varistors or TVS didoes for protecting AC power input lines.” Pxxx0MEL series and Pxxx0FNL series SIDACtor protection thyristors offer these key benefits:

  • Clamping that is superior to traditional MOV passive technology for AC line protection provides high power surge protection up to 3 or 5kA.
  • Low on-state voltage condition ensures low thermal accumulation during long term events.

Unlike Gas Discharge Tubes (GDTs) or surge arrestors, these semiconductor crowbar devices have no wear-out mechanism, so they can withstand multiple surge events with minimal degradation, eliminating the need to dispatch service personnel to replace damaged equipment.

Downloads


You must be logged in to comment

Write a comment

No comments




Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

CES 2019
8th January 2019
United States of America Las Vegas, Nevada
Southern Manufacturing & Electronics 2019
5th February 2019
United Kingdom Farnborough
embedded world 2019
26th February 2019
Germany Nuremberg
Wearable Tech Show 2019
12th March 2019
United Kingdom London
AMPER 2019
19th March 2019
Czech Republic Brno Exhibition Centre