Bioluminescence is able to detect deep cancers

21st June 2016
Enaie Azambuja

A team of Tokyo Tech and the University of Electro-Communications (UEC) researchers developed a luciferin analog that can produce bioluminescence with near-infrared wavelength and is applicable in animal experiments. This allows markedly higher target-detection sensitivity, even at very low concentrations. The UEC researchers had previously synthesised a novel luciferin analog, AkaLumine, by altering the chemical structure of D-luciferin.

While the emission wavelength of bioluminescence produced by AkaLumine yielded high penetration, its insolubility hindered its use. The team moved beyond this to screen for water-soluble derivatives of AkaLumine, and discovered that one of them, AkaLumine hydrochloride (AkaLumine-HCl), was in fact soluble.

The Tokyo Tech researchers evaluated these substrates and had provided proper information for directing it to be practical use in animal experiments, making AkaLumine-HCL applicable for bioluminescence imaging of deep tissues.

AkaLumine-HCl emitted near-infrared bioluminescence at 677 nm when reacted with firefly luciferase, and had greatly improved tissue-penetration efficiency. In 4-mm or 8-mm slice of beef, AkaLumine-HCl bioluminescence showed penetration 5-fold and 8.3-fold higher than bioluminescence produced by D-Luciferin.

Notably, achieving such a high sensitivity using D-luciferin would require a 60-fold higher concentration.

Optical imaging of the biological tissue (4-mm/8mm-thick sliced beef) were placed on the wells with each substrate. Penetration efficiency of bioluminescence through the tissue.

To further evaluate the performance of AkaLumine-HCl in a lung cancer mouse model, the researchers compared the bioluminescence signals from mouse lung cancer treated with AkaLumine-HCl, D-luciferin, and its superior counterpart, cyclic alkylaminoluciferin.

Remarkably, AkaLumine-HCl significantly increased detection sensitivity of lung tumors as compared with D-luciferin and CycLuc1.

Owing to its superior properties that enable higher sensitivity and accuracy, AkaLumine-HCl has potential to become the preferred choice for bioluminescence imaging. Nonetheless, for now, the benefits that its discovery brings can already be reaped in bioluminescence imaging studies in small animal models.

Product Spotlight

Upcoming Events

View all events
Latest global electronics news
© Copyright 2024 Electronic Specifier