This post answers the question: “What are features of single mode fiber?”. Single-mode fibers are fibers that support only
mode, fundamental mode.
Single-mode fiber determined by the value of
where
and
are cutoff.
Eigenwave equations there can be obtained from the cutoff condition we discussed before where
. The cutoff condition is
and
.
For
the smallest
. In this condition fiber supports only fundamental , which is condition of the single-mode fiber.
Cutoff condition can also help to obtain core radius of a fiber using the equation
, here
is a core radius. The mode index for the operating wavelength is
. The
is linearly polarised fiber mode. Axial components
and
are very small. If we take
so
. Electric field
is related to magnetic field
via relationship
.
If we will assume that
, we can obtain magnetic field
via similar relationship with
.
Real fibers can have variation of the shape of the core along the fiber length, or experience nonuniform stress. For this reason modal birefringence of the fiber is
, here
and
are mode indices for the orthogonally polarised modes.
Due to birefringence two polarisation components are periodically exchange power between them with period
.
Lineraly polarised light is lineraly polarised only when it is polarised along one of the axes
. In other case the polarisation periodically changes from linear to eliptical.
One of the features of single mode fiber is birefringence. In single mode fibers birefringence changes randomly along the fiber because of anisotropic stress variations in the core shape. The linear polirised light reaches the mode with arbitrary polarisation. Different frequency components of a pulse are characterised with different polarisation states, the pulse start to broaden. This phenomena is called polarisation-mode dispersion (PMD). Polarisation-maintaining fibers, are fibers that are not influenced by core shape and size ununiformity.
Another feature of single mode fiber is spot size. Field distribution in the fiber is often described by Gaussian distribution
, here
describes the spot size and called as field radius.
Optical fibers are characterised with effective core area, parameter, describing how tightly light contains in the core and defined by formula
. The power that contains in the core is defined by formula
and called confinement factor. Using confinement factor
for various
values we can show that most telecommunication single-mode fibers are designed to work with the
values from 2 till 2.4.
Source: “Fiber-optic communication systems”, Govind P.Agrawal, 2002
Read more educational content on our Reddit page r/ElectronicsEasy.