Component Management

ZnO heterostructures yield GaAs-style quantum phase

24th April 2015
Barney Scott

Heterointerfaces composed of dissimilar materials have been applied to functional devices such as transistors and LEDs. In particular, the best-quality electron system is formed in gallium arsenide heterostructures, where a unique quantum phase was found at low temperature about 30 years ago, the characteristics of which have yet to be clarified.

This quantum phase is expected to be applied for a new type of topological quantum computer which possesses dramatically improved computing speed while maintaining tolerance for computational error.

Researchers at the Quantum Phase Electronics Center/Department of Applied Physics, the Graduate School of Engineering at the University of Tokyo, headed by Professor Masashi Kawasaki, in collaboration with a group headed by Dr. Jurgen Smet at the Max-Planck Institute, have fabricated Zinc Oxide (ZnO) heterostructures of unprecedented high quality, and observed the quantum phase in a material other than a Gallium Arsenide (GaAs) heterostructure for the first time.

This study has revealed that ZnO possesses a controllability that is absent in GaAs, indicating the significance of ZnO in order to improve our understanding of this quantum phase.

This research has been published in the online edition of Nature Physics (23rd March, 2015). This research was performed in collaboration with PhD candidate Joseph Falson at the Graduate School of Frontier Sciences at the University of Tokyo, postdoctoral researcher Denis Maryenko at RIKEN CEMS, lecturer Yusuke Kozuka at the Department of Applied Physics, the Graduate School of Engineering at the University of Tokyo, and Professor Atsushi Tsukazaki at the Institute for Materials Research at Tohoku University.

Featured products

Product Spotlight

Upcoming Events

View all events
Newsletter
Latest global electronics news
© Copyright 2022 Electronic Specifier