Analysis

On the road to terahertz electronics

28th June 2018
Alex Lynn
0

A team headed by Alexander Holleitner and Reinhard Kienberger, Physics professors at the Technical University of Munich (TUM), has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometres in size, then running the signals a few millimetres above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100GHz. Optoelectronics uses electromagnetic phenomena starting at ten terahertz. This range in between is referred to as the terahertz gap, since components for signal generation, conversion and detection have been extremely difficult to implement.

The TUM physicists Alexander Holleitner and Reinhard Kienberger succeeded in generating electric pulses in the frequency range up to ten terahertz using tiny, so called plasmonic antennas and run them over a chip. Researchers call antennas plasmonic if, because of their shape, they amplify the light intensity at the metal surfaces.

The shape of the antennas is important. They are asymmetrical: One side of the nanometre-sized metal structures is more pointed than the other. When a lens focused laser pulse excites the antennas, they emit more electrons on their pointed side than on the opposite flat ones. An electric current flows between the contacts, but only as long as the antennas are excited with the laser light.

Christoph Karnetzky, lead author of the Nature work, explained: "In photoemission, the light pulse causes electrons to be emitted from the metal into the vacuum. All the lighting effects are stronger on the sharp side, including the photoemission that we use to generate a small amount of current."

The light pulses lasted only a few femtoseconds. Correspondingly short were the electrical pulses in the antennas. Technically, the structure is particularly interesting because the nano-antennas can be integrated into terahertz circuits a mere several millimetres across.

In this way, a femtosecond laser pulse with a frequency of 200THz could generate an ultra-short terahertz signal with a frequency of up to ten terahertz in the circuits on the chip, according to Karnetzky.

The researchers used sapphire as the chip material because it cannot be stimulated optically and, thus, causes no interference. With an eye on future applications, they used 1.5μm wavelength lasers deployed in traditional internet fiber-optic cables.

Holleitner and his colleagues made yet another amazing discovery: Both the electrical and the terahertz pulses were non-linearly dependent on the excitation power of the laser used. This indicates that the photoemission in the antennas is triggered by the absorption of multiple photons per light pulse.

Alexander Holleitner stated: "Such fast, nonlinear on-chip pulses did not exist hitherto." Utilising this effect he hopes to discover even faster tunnel emission effects in the antennas and to use them for chip applications.

Product Spotlight

Upcoming Events

View all events
Newsletter
Latest global electronics news
© Copyright 2024 Electronic Specifier