Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory Articles

Displaying 1 - 17 of 17
Test & Measurement
10th January 2018
'Brain-on-a-chip' tests negate the need for human or animal subjects

Lawrence Livermore National Laboratory scientists have developed a 'brain-on-a-chip' device aimed at testing and predicting the effects of biological and chemical agents, disease or pharmaceutical drugs on the brain over time without the need for human or animal subjects. The device, part of the Lab’s iCHIP project, simulates the central nervous system by recording neural activity from multiple brain cell types deposited and grown onto...

3D Printing
19th December 2017
Volumetric 3D printing builds on need for speed

  While additive manufacturing, commonly known as 3D printing, is enabling engineers and scientists to build parts in configurations and designs never before possible, the impact of the technology has been limited by layer-based printing methods, which can take up to hours or days to build three-dimensional parts, depending on their complexity.

Component Management
24th October 2017
Nanowire aerogel boosts energy and electronics industries

A new ultralight silver nanowire aerogel could be a boost to the energy and electronics industries. Metal foams (or porous metals) represent a new class of materials with unique properties including lightweight, high surface area, high electrical conductivity and low thermal conductivity. Lawrence Livermore National Laboratory (LLNL) researchers have created a new ultralight silver nanowire aerogel that could lead to advances in fuel cells, ...

Component Management
25th July 2017
Understanding the hierarchical structure in carbon nanotubes

Lawrence Livermore National Laboratory (LLNL) scientists recently used synchrotron X-ray scattering to fully capture the hierarchical structure in self-organised carbon nanotube materials from the atomic to micrometer scale. Their work, recently published in ACS Nano, is the first to continuously map the structural order of nanotube ensembles across four orders of magnitude in length scale, all while employing a single technique.

3D Printing
26th May 2017
Technology speeds up 3D printing

  A technology originally developed to smooth out and pattern high-powered laser beams for the National Ignition Facility (NIF) can be used to 3D print metal objects faster than ever before, according to a new study by Lawrence Livermore researchers. A team of Lab scientists report the findings in the latest issue of Optics Express.

3D Printing
31st March 2017
Reinventing metal 3D printing with direct writing process

Metal 3D printing has enormous potential to revolutionise modern manufacturing. However, the most popular metal printing processes, which use lasers to fuse together fine metal powder, have their limitations. Parts produced using selective laser melting (SLM) and other powder-based metal techniques often end up with gaps or defects caused by a variety of factors.

8th March 2017
Imaging high explosive detonators

Lawrence Livermore National Laboratory scientists and collaborators at LANL for the first time have taken 3D snapshots of operating high explosive detonators. Scientists from LLNL, Los Alamos and National Security Technologies, LLC (NSTech) combined state-of-the-art imaging capabilities with computed tomographic reconstruction (X-ray cross sectional imaging) in experiments performed at the Argonne National Laboratory's Advanced Photon S...

Component Management
10th February 2017
Observing the growth and alignment of nanotubes

For the first time, Lawrence Livermore National Laboratory scientists and collaborators have captured a movie of how large populations of carbon nanotubes grow and align themselves. Understanding how carbon nanotubes (CNT) nucleate, grow and self-organise to form macroscale materials is critical for application-oriented design of next-generation supercapacitors, electronic interconnects, separation membranes and advanced yarns and fabrics.

3D Printing
21st October 2016
3D printing speeds up production for testing material strength

  Advanced 3D printing promises to redefine manufacturing in critical industries such as aerospace, transportation and defense, and now, Lawrence Livermore National Laboratory is exploring the use of 3D printing to achieve unprecedented flexibility in producing "on-demand" targets for testing how materials behave under extreme conditions.

Component Management
23rd September 2016
Method purifies copper nanowires

A team of Lawrence Livermore National Laboratory (LLNL) scientists have created a method to purify copper nanowires with a near-100% yield. These nanowires are often used in nanoelectronic applications. The research, which appears in the online edition of Chemical Communications and on the cover of the hardcopy issue, shows how the method can yield large quantities of long, uniform, high-purity copper nanowires.

Component Management
14th September 2016
Iron springs back to shape under pressure

A team of Lawrence Livermore National Laboratory (LLNL) physicists has performed a series of calculations shedding light on an unexpected way that iron transforms under dynamic compression. In a paper published in Physical Review Letters, the team describes first-principle calculations on two solid phases of iron, as well as on intermediate crystal structures along the transformation path from one phase to the other.

3D Printing
24th August 2016
One more dimension for additive manufacturing

  A team of Lawrence Livermore National Laboratory researchers have demonstrated the 3D printing of shape-shifting structures that can fold or unfold to reshape themselves when exposed to heat or electricity. The micro-architected structures were fabricated from a conductive, environmentally responsive polymer ink developed at the Lab.

17th August 2016
Microscope expands materials characterisation capabilities

A Transmission Electron Microscope (TEM) installed at the Lab earlier this year is giving LLNL researchers a clearer look at the atomic level of structures than they've had before. The Titan 80-300 TEM, manufactured by FEI Company, was installed in December and brings an expanded capability to the existing transmission electron microscope the Lab has had for about 20 years, according to LLNL staff scientist Joe McKeown.

Component Management
12th August 2016
De-icing agent remains stable at a million atmospheres

Lawrence Livermore National Laboratory scientists have combined X-ray diffraction and vibrational spectroscopy measurements together with first-principle calculations to examine the high-pressure structural behavior of magnesium chloride. Magnesium chloride (MgCl2) is well known to be an effective de-icing agent, for example, in the aviation industry.

27th July 2016
Microchip-based platform measures PNS activity

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have successfully incorporated adult human peripheral nervous system (PNS) cells on a microelectrode platform for long-term testing of chemical and toxic effects on cell health and function. The study, part of a project known as iCHIP (in-vitro Chip-Based Human Investigational Platform), was recently published online in the journal Analyst.

3D Printing
15th June 2016
3D-printed polymer turns methane into methanol

Lawrence Livermore National Laboratory scientists have combined biology and 3D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure. The team removed enzymes from methanotrophs, bacteria that eat methane, and mixed them with polymers that they printed or molded into innovative reactors. The research, which could lead to more efficient conversion of methane to ener...

30th March 2016
Brain-inspired supercomputer allows for deeper learning developement

Lawrence Livermore National Laboratory (LLNL) has announced it will receive a first-of-a-kind brain-inspired supercomputing platform for deep learning developed by IBM Research. Based on a breakthrough neurosynaptic computer chip called IBM TrueNorth, the scalable platform will process the equivalent of 16m neurons and 4bn synapses and consume the energy equivalent of a hearing aid battery – a mere 2.5W of power.

First Previous Page 1 of 1 Next Last

Featured products

Upcoming Events

View all events
Latest global electronics news